Processing math: 100%

Sudut-Sudut Istimewa pada Trigonometri

Melanjutkan dari postingan sebelumnya Pengantar Trigonometri, kali ini kami akan membahas tentang sudut-sudut istimewa. Sudut-sudut istimewa dalam trigonometri maksudnya adalah sudut-sudut tertentu yang apabila kita cari nilai sin, cos dan tan-nya memiliki nilai yang terlihat simple. Sudut-sudut istimewa tersebut contohnya seperti 0°, 30°, 45°, 60°, 90°.

  Sudut 45°  
Kita mulai dari yang lebih sederhana yaitu sudut 45°. Untuk mendapatkan segitiga yang memiliki sudut 45°, kita dapat membagi sebuah persegi pada salah satu diagonalnya.

Panjang seluruh sisi pada persegi adalah sama, misalkan panjangnya  x. Maka AB = BC = x .
Dengan menggunakan rumus pythagoras, kita bisa menentukan panjang sisi AC.

AC^{2} = AB^{2} + BC^{2}
 AC = \sqrt{x^{2} + x^{2}}
AC = \sqrt{2x^{2}}
AC = x\sqrt{2}

Sehingga,

sin 45° = \frac{x}{x\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2}
cos 45° = \frac{x}{x\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2}
tan 45° = \frac{x}{x} = 1
sin 45° = \frac{1}{2}\sqrt{2}
cos 45° = \frac{1}{2}\sqrt{2}
tan 45° = 1

  Sudut 60°  
Sudut 60° dapat kita peroleh dengan menarik garis tinggi pada segitiga sama sisi disalah satu sudutnya.
Karena jumlah sudut pada segitiga adalah 180° dan segitiga memiliki tiga sudut maka \frac{180}{3}=60 . Jadi \angle A = \angle B = \angle C = 60° . Kemudian segitiga dibagi dua menjadi seperti \Delta ACD , diawal kita misalkan panjang semua sisi sama yaitu x , maka pada \Delta ACD panjang AD = \frac{1}{2}x , panjang AC tetap x sedangkan CD dapat dihitung dengan rumus phytagoras.

CD^{2} = AC^{2} - AD^{2}
CD = \sqrt{x^{2}-\left (\frac{1}{2}x  \right )^{2}}
CD = \sqrt{x^{2}-\frac{1}{4}x^{2}}
CD = \sqrt{\frac{3}{4}x^{2}}
CD = \frac{x}{2}\sqrt{3}

Sehingga,

sin 60° = \frac{\frac{x}{2}\sqrt{3}}{x}=\frac{1}{2}\sqrt{3}
cos 60° = \frac{\frac{1}{2}x}{x}=\frac{1}{2}
tan 60° = \frac{\frac{x}{2}\sqrt{3}}{\frac{x}{2}}=\sqrt{3}
sin 60° = \frac{1}{2}\sqrt{3}
cos 60° = \frac{1}{2}
tan 60° = \sqrt{3}
  Sudut 30°  
Dari pembahasan sudut 60° sebelumya, kita juga akan mendapatkan sudut 30°
sin 30° = \frac{\frac{1}{2}x}{x}=\frac{1}{2}
cos 30° = \frac{\frac{x}{2}\sqrt{3}}{x}=\frac{1}{2}\sqrt{3} 
tan 30° = \frac{\frac{x}{2}}{\frac{x}{2}\sqrt{3}}=\frac{1}{\sqrt{3}}=\frac{1}{3}\sqrt{3}
sin 30° =\frac{1}{2}
cos 30° =\frac{1}{2}\sqrt{3}
tan 30° =\frac{1}{3}\sqrt{3}
  Sudut 0°  
Untuk mendapatkan sudut 0°, kita gambarkan sebuah segitiga di dalam seperempat lingkaran dengan sisi miring segitiga sama dengan jari-jari seperempat lingkaran. Kemudian kita kecilkan segitiga tersebut dengan tetap menjaga agar sisi miring segitiga sama dengan jari-jari lingkaran hingga titik C hampir meyentuh B. Sehingga bisa kita anggap panjang sisi BC mendekati 0 (BC ≈ 0). Hal ini juga mengakibatkan panjang sisi AC mendekati sisi AB (AC ≈ AB) atau mendekati jari-jari lingkaran \left ( x\approx r \right ).
sin 0° = \frac{BC}{AC}=\frac{0}{r} = 0
cos 0° = \frac{AB}{AC}=\frac{r}{r} = 1
tan 0° = \frac{BC}{AB}=\frac{0}{x} = 0
sin 0° = 0
cos 0° = 1
tan 0° = 0
  Sudut 90°   
Mirip dengan pembahsan pada sudut 0°, hanya saja sisi BC yang akan kita perpanjang (AC ≈ BC) sehingga \left ( y\approx r \right ). Hal ini juga berakibat pada panjang sisi AB yang menjadi mendekati 0 (AB ≈ 0).
sin 90° = \frac{BC}{AC}=\frac{r}{r} = 1
cos 90° = \frac{AB}{AC}=\frac{0}{r} = 0
tan 90° = \frac{BC}{AB}=\frac{r}{0} = +∞ 
Silahkan baca Bentuk Tentu dan Tak Tentu untuk lebih memahami bentuk \frac{0}{0},\frac{\infty}{\infty},\frac{x}{0},\infty - \infty, dll.
sin 90° = 1
cos 90° = 0
tan 90° = +∞
  Rangkuman   
Tabel sudut-sudut istimewa 0° sampai 90°
Tabel sudut-sudut istimewa 0° sampai 360°
Bisa kalian lihat tabel diatas terdapat csc, sec, cot . Untuk memahami kata-kata tersebut kalian bisa membaca Cosecan, Secan dan Cotangen dan untuk mengetahui cara mendapatkan nilai sin,cos dan tan untuk sudut lebih dari 90° kalian bisa membaca Konversi Sudut Trigonometri.


[Referensi]
● Bengkel Mafia - M401 Trigonometri : Sudut Istimewa
 BelajarKalkulus
Surya Anoraga J.Y
Math and Physics enthusiast

Related Posts

Post a Comment

Subscribe Our Newsletter